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SECTION I

INTRODUCTION

The objective of this research is to develop procedures to predict the

family of mechanical response characteristics for~ Rend 95 at 650*C (1200*F).

This is achieved by adapting three constitutive theories available in the

literature for Rend 95; determining the material coefficients from a standard

set of tensile and creep experiments; and, then predicling the response of

several experiments distinctly different from the standard set of experiments

used to find the material constants.

The mechanical response of Rene 95 at 650 0C (1200 0F) is typical i.l some

ways of many high temperature alloys in that it exhibits creep, stress relax-

ation, strain recovery, and both cyclic hardening and softening. However, as

discussed in Reference 1, Rend 95 also exhibits some special response charac-

teristics that must be included in a constitutive model. These characteristics

are: (i) the relative rate independence in the stress strain response at the

higher strain rates using engineering stress; (ii) that the material is nearly

history independent in the secondary creep domain; and (iii) the development

of a mean strain during symmetric load control cycling.

Constitutive modeling of metal behavior on the basis of single integral

hereditary equations, state variable equations, and also on the basis of a

yieLd surface approximation is available in the literature. For Rend 95 at

elevated temperature, the yield surface methods have several shortcomings. In

particular, since inelastic deformations are observed at stresses well below

the standard proportional Limit, a continuous flow type equation appears to be

more consistent. This avoids the necessity of separating the inelastic strain

into time independent and time dependent components. Thus, only constitutive



equations that predict the total inelastic strain or total strain as a con-

tinuous function of stress are considered.

In this study, specific attention is given to the models of: Bodner and

Partom (References 2-5); Laflen and Stouffer (Reference 6), and Rabotnov and

Papernik (References 7-8). As reported earlier (Reference 9), all three

models are continuous and phenomenologically developed, but emphasize different

physical considerations and mathematical representations. All1 theories are

three dimensional and have been successfully used to predict the response of

one or more metals in a high temperature environment. Modifications in the

theories have been made or proposed as a result of the present study. The

predictive capability of each model is evaluated by examining the following

points: (1) how well each theory can reproduce the data from which its mate-

rial constants are evaluated; (2) how well it can predict the response of a

totally unrelated set of experiments; (3) how easily the material constants

can be determined from the experimental data; and (4) the efficiency of each

model when it is used in a numerical algorithm. The paper is concluded with a

point by point comparison of the above three models.

2



A STATE VARIABLE APPROACH

SECTION II

THE CONISTITUTIVE FORMULATION

The basis of the constitutive equations for small strains proposed by

Bodner and Partom (Ref erences 2-5) is the separation of the total strain rate

tensor E (t), into elastic (reversible) and inelastic (non-reversible) com-

ponents

that are assumed to be continuous and non-zero for all non-zero values of

stress. As a consequence, the equations do not require a yield criterion or

* eloading/unloading conditions. The term c- (t) is directly related to the time

derivative of stress by Hooke's Law for the small strain case. In general

J'(t) is assumed to be of a form similar to the Prandti-Reuss equations

_ A~~t)(2)

where is a scalar material function and e~and are the deviatoric strain

and stress tensors. In general X is taken as a function of the stress, tem-

perature and state variables, however; since this exercise is for a constant

temperature environment, temperature is omitted from the representation. The

dependence of .\ on stress and the state variables is outlined in the next few

pa ragraphs.

Equation 2 predicts that the response is isotropic and that the plastic

strains are incompressible. (These restrictions can be removed as shown in

Reference 5). The square of Equation 2 can be rewritten in the form

3



p 2 (3)

where Dp and J are the second invariants of the plastic strain rate and
2 2

deviatoric stress tensors, respectively. To develop a relationship between

plastic strain rate and stress, Bodner and Partom, Reference 2, 3, assumed

that some measure of the inelastic strain rate, namely DP, should have a

mathematical form similar to the relationship between the average velocity of

mobile dislocations, U, and the applied stress, 0. Following the work of

Vreeland, Reference 10 or Gillman, Reference 11, the dislocatin velocity

has a stress dependence which can be approximated by

u ~ . ] cr u exp

respectively, where A, B, and n are constants. Subsequently, Bodner and

Partom ultimately evolved a representation in the form

DP exp [3]](4)

to obtain the maximum flexibility in the model. Further, experience has shown

that Z is not a constant; but should be interpretated as an internal state

variable. Thus, using Equations 4, 3 and 1 gives a specific representation

for the plastic strain rate tensor. The model can be written in one dimension

as

= +

4

-- ; - ' ' -l '- , 9.. 
.. ... ..



where (5)(1)

.p0 2E7 [lt r~f~~ Z (t)
/- a(t) •

The constant, D0 , represents the limiting strain rate; E, the elastic

modulus; and n, a constant controlling the strain rate sensitivity. The term

a/ I a requires that plastic strain rate and stress have the same sign. Note

that Equation 5 cannot predict strain recovery since P - 0 whenever C - 0.

This deficiency could be relevant for Ren& 95 since a small amount of strain

recovery is present at elevated temperatures.

The state variable, Z, is a macroscopic measure of the hardness or resis-

tance to inelastic flow. The formulation is, at least in part, motivated by

the properties of the stored energy of cold work. The evolution equation for

Z is therefore assumed to depend on the rate of inelastic working and a hard-

ness recovery term, i.e.

= -
(6)

7WJ p rec

which is the general form

S= f (Za)

In order to describe both the short time stress-strain response and the long

time creep response a specific representation can be written in the form

z [1 - p - A ( -7)zl zl t zl J (

(1)This factor (n + 1)/n was introduced at an early stage of the development
of the theory for numerical convenience, it has been included in this presen-
tation in order to compare results.

5



which can be integrated to give

Z + _ I . (8)

The parameters ZO, Z1, ZI , m, A and r are all constants. In general, the con-

stants in Equation 7 or 8 are picked so that the integral term is negligible

during rapid stress histories (neglecting recovery effects). The constants

Z0, Z1 and m are determined from the stress strain data; whereas A, ZI and r

are determined from the creep response.

Finally, for some materials it was found that the strain hardening charac-

teristics required some additional constants. For Rend 95, this possibility

was investigated to improve the predictive capability of the model. Thus, for

later use, let us generalize the constant m to

m a m0 + MI exp(-CLW ), (9)

where m., m I and a are the additional material constants. A catalog of most

of the material contants and their physical meaning is given in Reference 12.

It should be noted in using the integrated form for Z, Equation 8, that

W is the relative amount of plastic work from a given state Z and is not an
p 0

absolute value. An interesting point is that secondary creep is the condition

for which = 0 which leads to an equation for Z - Z(a) independent of Zo,

i.e., prior history. According to these equations, the secondary creep rate

would be independent of prior history effects.

6



SECTION III

PREDICTION OF MATERIAL PROPERTIES

In a recent report, Reference 12, Bodner evaluated the response of

Rend 95 at 6500 C (1200*F) from previously published data in Reference 13.

In this work m was fixed as a constant rather than using Equation 8. The

values of the constants reported in Reference 12 are:

Do = 104 sec 1.a- not used

(assumed)

Z - 1600 MPa (232 KSI)

n - 3.2

Z 1 . 2200 MPa (319 KSI) A - 4 x 10- 4 sec
- I

z 1600 MPa (232 KSI) r - 1.5Z0

m0 = 0.4 MPa -1 (0.058 KSI -I) E - 1.77 x 105 MPa (2.57 x 104 KSI)

(m1 - 0)

These constants also were used as a starting point to predict the stress-

strain and creep data reported in Reference 1. The results are shown in

Figures 1, 2, and 3. In general, reasonable agreement is found, however, the

predicted response could be improved through the strain range of interest.

One shortcoming observed in Figure 1, and also in Figure 1 of Reference 12,

is that the predicted shape of the stress-strain curve does not match the data

as well as might be desired. Another difficulty is establishing the material

constants given above. The system of equations are highly nonlinear with

complex coupling. Bodner and his coworkers have proposed a method to find

some of the above constants, Reference 12; which they have extended to the

above system of equations through a trial and error sequence of numerical

exercises. In the next section an attempt is made to improve the model in

these areas.

7
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SECTION V!

ANALYSIS OF THE HARDENING PARAMETER

The above system of equations requires the use of 7 or 9 constants that

must be determined from the inelastic response of the material. The limiting

value of the stress rate, Do$ does not appear to be critical and is generally

assumed to be 10 4sec 1. The elastic modulus is also assumed to be known.

One method to determine the hardening characteristics is to observe that

the plastic strain rate history, cR(t), and stress history,

a(t), are known from the experimental data. Thus, Z(t) can be calculated from

the second part of Equation 5 as

f2n

a~t ( t) lnFL-D,/ E: (t)
-~ 3 (10)

f or some choice of the constant n. Experience with the theory shows that

changes in n change the strain rate sensitivity of the prediction by scaling

the family of stress-strain rate curves on the abscissa axis but maintain the

same shape. Thus, the value of n and the Z history can be determined from two

stress strain response curves at the higher values of strain rate (to neglect

recovery effects) by choosing the value of n for which the Z histories from

each curve are the same.

The relative rate insensitivity of Renk 95 at the higher strain rates, as

discussed in Reference 1, made the response relatively insensitive to the

choice of n about 3.0. Thus, for convenience in comparing results the func-

tions Z(t) and W P(t) were determined from an experimental stress-strain curve

Reference I using n -3.2. The function Z(W p) is shown in Figure 4. Also

shown in Figure 4 is Equation 6 using the constants from Reference 12. The

correlation with the data is not very good. Alternatively, the model of Z(W )



was constructed using both Equations 6 and 9, and the result is also shown in

Figure 4. This provides a much better correlation. But, it is interesting to

note that Z vs log W is plotted, a linear relationship is obtained as shownp

in Figure 5. This suggests, at least for Reni 95 that

o

Z(W P(){a+bW W -W

a p p p 2

would give a better representation for Z(W p). The linear term, ( II)i, for

small values of plastic work, W < Wp, is necessary to give the proper asymp-

totic values as W approaches zero. The values of the constants are

Z = 340.0 KSI a - 232.0 KSI
0

Z I 31.12 KSI b - 60.68

W - 0.0265 KSI
p

The predicted stress-strain response using Equation 11 is shown in Figure 6. A

considerable improvement in the shape of the response has been obtained as well

as developing a systematic method to obtain above constants. Note, that the

predicted creep response was not significantly changed by the use of Equations

II.

12
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AN ISOCHRONOUS THEORY

SECTION V

THE CONSTITUTIVE FORMULATION

This approach is based on the Rabotnov nonlinear single integral equation

for viscoplasticity, Reference 7. The constitutive equation in a one dimen-

sional case takes the form

t

[( = (t) + JK(t-)a(r)d-T (12)

0

where is a nonlinear function of the total strain, E(t), at the current time,

t, and K(t)> 0 is a measure of the monotonic creep function. The inverse of

Equation 12 can be written as, Reference 8,

t

(t) = (t) f R(t-T)[()d (13)1
0

The relaxation function, R(t), is the resolvent kernel of K(t). Obviously,

if [f(t)] is replaced by E-6(t) in Equation 12 or 13 the representation reduces

to linear viscoelasticity where E is the elastic modulus. However, to clarify

the nonlinearity of the model consider a creep history whena (t) -co , a con-

stant. Equation 12 becomes

t

4[= 1) +- K(t-r)dT = f(t) (13)2

0 0

that is the strain function normalized by the stress,¢ [c(t)]/o, becomes a

function of time alone. Thus, the theory is applicable only if the isochronous

creep curves are similar; that is, if they cau be obtained from a master curve

by scaling the ordinate at each fixed time. This similarity can be observed in

16

S -ro li an I Iu i.



Figure 7 for Ren6 95 at 650°C(1200*F). This similarity also exists for many

other materials as shown in Reference 14.

The function [EI is found from the family of isochronous creep curves or

stress-strain curves obtained at various rates in tension and compression. In

general, ([] represents a hypothetical state of "instantaneous" loading res-

ponse which can never be achieved in real experimentation.

Since the constitutive Equation 12 is easy to invert, the relaxation be-

havior of the material when E(t) = E, a constant, is governed by Equation 13

which takes the form

ta Ct) -f ct d f()

R-- = 1= f (14)

00

that is, the stress normalized by the strain function becomes a function of time

alone. If the creep function K (t) is chosen in the form of some analytical

expression, the relaxation function R(t) can be found by means of the integral

equation theory.

A successful representation for the kErnel function K(t) for Ren6 95 has

been found in the form of power law

K(t-T A , (15)

(t -T )

where A and :4 are the material constants. The constant a is restricted to the

O< t < 1, which gives a weak (integrable) singularity at - - t that is easily

overcome numerically. The resolvent function R(t) in this case takes the form

of [ractional-exponential function

E (- 't-:) = I (- )n(t-T) (o+l) n+F[(+l) (n+l) ]'(6

n=O

L7



where B A r (ca+ 1). The properties of the functionE (-8,t) are given in

Reference 18.

Nonlinear hereditary equations of this type describe active deformation

processes when the load is a nondecreasing function of time. Accordingly, a

condition of the applicability of the above equation is ; (t) > 0. However, the

model in question makes it possible to obtain a simple constitutive equation for

unloading in tension. If the elastic unloading is assumed, this equation takes

the form

E[L - E(t)] + = (t) + K(t - T)C(T)dT, ;(t) < 0,
fo (18)

where E is the instantaneous modulus of elasticity, E = - (t*) is the value of

maximum strain achieved in the loading process at time t , and 0 is the value

of [Ee(t*)]. Combining Equations 12 and 13, a single general tensile load-

unload equation can be written as, Reference 8,

F[G(t),£ ] = a(t) + K(t - T)C(t)d-t (19)

where the instantaneous load-unload master curve is

F [[(t), F _ V E(t)] when (t) _ 0

L -E*- t)I + when (t) < 0

Equation 19 is easily extended to compressive histories as shown in the next

section. In the above equation function K(t) takes into account the entire

history of stress a(t) from the moment of application of the load. The process

18



described as active deformation (see Figure 8) corresponds to loading upwards

along the a 4(e) curve as far as the strain E and unloading downwards along

the straigth line a - E(E - s(t)) + tn this case it is possible to take

into account the strain recovery. Equation 19 thus makes it possible to

describe the deformation response to different histories, including cyclic

loading and the strain recovery following removal of the load.

19
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Figure 8. Definition of the master loading and
unloading curves for the isochronous
theory
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SECTION VI

APPLICATION TO RENE 95

To apply the model to a material it is necessary to evaluate the constants

and A in the kernal function K(t); and, to develop a representation for the

strain function [].

The procedure for evaluating a and A is accomplished from the data in the

isochronous creep curves. To begin, let G(t) - o, a constant, and substitute

Equation 16 into 12 to get

(E W I = [ , + A1 t - ](20)

where A, W A/( -a ). Define some isochrone t-t of the family as the basis and

let the strain E correspond to a at t . Next construct the ratio

0 0 + Altl ] (21)

where 0(c ) is the fixed strain function defined on another isochrone at the
0

creep stress a Rewriting Equation 21 gives

- = b(l + A t I- 
(22)

where

1b

+ 1 - (23)1 + A

22
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Equation 22 is linear in the coordinates co / and t - afor any strain e
0

1- a
Therefore, the family in coordinates / and t - corresponding to a for each

isochrone to , can be brought into a straight line for the proper choice

of a. In this case, the point of intersection of the straight line and the

ordinate axis gives the value of b , and the slope is used to determine the value

of A1. This procedure is illustrated in Figure 9 for E - 2.0% and the resul-0

ting values are given in Table 1. To obtain the best average values for b

and a , this process should be repeated for other choices of C using the sameo

basis to; and, also for other choices of the basis t . This was done for Renk 95

and the average values are

a 0.83 and A - 0.019

Observe that points of the master curve [c(0)] at time t - 0 can be determined

from Equation 22 for each base curve a and t . Thus the master curve is0 0

derived from the extrapolated point b. The master curve should therefore be

considered as a hypothetical instantaneous response function.

To establish a representation of the strain function E(t)], it is advan-

tageous to observe that the right hand side of Equation 12 represents a

pseudo stress( (t) that depends on the actual stress history a(T) for Te[0,t]

and contains all the hereditary information. Thus Equation 12 can be written

as

I- a(t) (24)
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where

aT) dT
( (t-r) -T (25)

Further, since Equation 12 is assumed to uniquely describe the strain function

for any stress history, [E:(t)] possesses a unique inverse

E(t) = -EaCtI] (26)

Thus, using Equations 25 and 26 the history dependence can be represented by a

pseudo stress-strain equation.

A specific representation for Ren 95 can be established by using the

Ramber-Osgood equation, Reference 15, forp l[a(t)]. Let

(t) - -1 [&(t)] -6(t)+ --- (27)

where E is the elastic modulus of the material, M and m are constants that must

be determined from the master curvea (0) -p [(O)]. The values M = 1351 MPa(196

KSI) and M - 0.05 were found for Ren4 95 at 6500C. (1200°F).

The stress strain curves at different stress rates and the creep curves

calculated using Equations 27 and 25 are shown in Figures 10, 11, and 12. The

model exhibits a rate sensitivity which is determined by a spacing of three

4solid lines in Figure 10 representing change of strain rate of 104. RenA 95

does not exhibit the same magnitude of rate sensitivity in this range. However,

good approximation of the creep curves makes it reasonable to use this simple

approach for a description of the material behavior.
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TABLE 1. COEFFICIENTS FOR THE ISOCHRONOUS CREEP THEORY

t 5% A 1  b
min MPa(KSI)

1 1224.6 (177.6) 0.111 0.898

50 L124.5 (163.1) 0.107 0.827

1000 1043.9 (151.4) 0.112 0.735
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(1) to = 1.0 min, (2) to =30 min, (3) to =1000 min
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A NONLINEAR CREEP FORMULATION

SECTION VII

PROPERTIES OF THE CONSTITUTIVE THEORY

Most of the classical methods of predicting creep are based on integral

type constitutive equations constructed from or equivalent to nonlinear "super-

position" type arguments. As such, they fail to accurately predict strain

recovery in metals at elevated temperature. This and other considerations

suggest the following approach for developing a successful viscoplasticity

constitutive law:

(1) The formulation should, at least in part, be developed directly from

so..e important experimentally determined function. This is to avoid

material functions with no physical meaning.

(2) Since elevated temperature material response is usually rate (time)

dependent, a constitutive formulation similar to viscoelasticity is

appropriate, however; the approach must be modified to predict the

correct anelastic recovery properties for metals.

(3) Establish and experimentally verify a one dimensional constitutive

theory. Then, if the material is isotropic, homogeneous, and iso-

choric, a three dimensional model can be theoretically developed with

a minimum of one scalar material function. (It is unlikely that such

a model could predict all of the material memory effects that would be

observed tn multiaxial testing. However, once developed, such a model

would help identify which material memory effects need additional

representation.)

To begin, let us select an equation that will adequately predict the con-

stant stress creep response of metals. The results of the experiments in

Reference I can be collectively modeled by the Marin-Pao equation, Reference 17.
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Kf¢,t] = A()[l - exp(- (U)t)] + £ic)t , (28)

where Kfo,tj is the uniaxial creep function. The minimum creep rate is denoted

by min, and all three coefficients are functions of the creep stressay.

Next, assume that the response characteristics described by the constant

load creep test, Equation 28 or equivalent, must be contained in any general

constitutive representation for a time varying stress history. Further, thermo-

dynamic coordinates q, can be introduced into the formulation to account for the

history and memory effects. Furthermore, it can be assumed that the time argu-

ment should be replaced by a "material clock",C . In Reference 6, a complete

development was given which included the q and' . However, it was found that it

was not necessary to include these terms in order to represent the material

response examined herein. Therefore, the simpler representation is outlined

below.

The representation given in Equation 28 or equivalent can be extended to

include transient stress histories, G (T) for £ (-,,E). This extension rests on

the assumption:

The amount of creep that occurs in some infinitesimal increment of

time (7, r + A r I depends only on the mean value of stress, temper-

ature, and a measure of the material state present during that in-

crement of time.

This assumption allows a representation for transient stress histories to be

established by partitioning a (t) for t<[to,t] into N subintervals, evaluating

the response in each interval, and integrating to obtain the total response.

thLet .(i 192,...'4) be the time at the beginning of the i thtime interval and

let a. be the average values of stress during the i time interval.
L
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The increment of strain at any time T due to a stress pulse G i during the time

interval [ T, T + AT] is assumed to be given by the Equation 28 applied at

time Ti and substracted at time T, where

T - Ti + CAT (29)

for 0< c < 1. The variable Ot is a material function that allows for varying

amounts of anelastic recovery to be included in the model. In general, awill be

a path and time dependent state variable. Proceeding to construct an integral

using a method similar to linear viscoelasticity, Reference 6, gives a repre-

sentation for the inelastic strain as

(t) f C ( K[ (T),t - T] + (1 - a) K[(T), ] iT. (7.3) (30)

The total strain, C(t), is then given by

C(t) = C(t) + Cl(t) (31)E

where E is the elastic modulus.

Let us consider the effect of the material parameter a on the range of

values 0< A < 1. If 4- 1, Equations 30 and 31 corresponds to the viscoelas-

ticity theory of Stouffer, Reference 16, where all primary creep is anelastic

and therefore recoverable. Also, for a constant stress history, Equation 30

yields the creep Equation 28. If Ot- 0, then Equation 31 becomes

t (32)
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In this case, the model predicts that the creep is permanent for all time (i.e.,

non-recoverable) as in plasticity. The result for a - 0 also corresponds to the

response during high stress rate loading. Thus a is a viscoplasticity parameter

that controls the relative contribution of the viscoelastic and plastic compo-

nents to the total inelastic strain.

As shown through the previous discussion, Equation 30 is sufficiently

general to model the spectrum of deformation response features characteristic of

materials at elevated temperatures. However, during an arbitrary stress history,

a method is needed which will translate the current stress condition into a

value of a. For example, if the stress is constant, then a should be unity in

order to predict the creep curve response. Conversely, if the material is

experiencing a rapid change in stress, then the response should correspond to a

plastic deformation and a should approach zero. However, if anelastic recovery

occurs in the material during a rapid stress transient, then a method of accoun-

ting for this type of response is needed and a cannot be exactly zero. These

considerations are used to develop a representation fora . It is shown in

Reference 6, that a is a function of the history of the stress rate and that

must also satisfy certain continuity requirements.

33
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SECTION VIII

APPLICATION TO RENE 95

To use the above system of equations for a real material it is necessary to

develop representations for the functions A(o), a (a) and m (a) in Equation 28

along with the parameter a. At the outset of the program it was decided to use

the simplest form for a, namely

a[ (t)] 1 1 o (33)0 for a 0

This provides the opportunity to investigate the interaction between the first

and second terms in Equation 30. In general, to predict creep, a = 0 during the

initial load to the creep stress and CA- 1 during the constant stress portion of

the creep history. Conversely, a- 0 for the duration of a constant stress -rate

test in tension or compression. This approximation is reasonable for Reni 95

for stress rate above 7 MPa/min (1.0 KSI) since there is very little effect of

the stress rate on the response. (See Figure 6 of Reference 1). However, if

the rate processes are in the creep domain, as shown in Figure 6 of Reference 1,

then Equation 33 would not be expected to predict the correct response. This

deficiency could easily be corrected with a set of experiments at very low

constant stress to determineO [ ].

The minimum creep rate function, (a) and the magnitude of the primarym

creep A(J), can be directly determined creep response data as given in Table 2.

A representation of this data is given by

A(a) = -1 2 exp[exp(al + a2)(34)1~) 00 al1 (34)1

(7) ffi exp(c + c)

(35)
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The time parameter was found to have the form

~(1 100Th~ (36)

from the onset of secondary creep. However, the constant, b, was picked to give

the best prediction of the response in tension and compression. Also, it is

expected that the coefficients a1, a2, b1 , b 2, c 1 and c 2 would be different in

tension and compression, however; sufficient data is not available to totally

determine all the compression coefficients. Thus, the same values for tension

and compression are used in both cases. The values used for Ren4 95 are given

in Table 3.

The reproduction of the creep and tensile data using Equation 30 is shown

in Figures, 13, 14, and 15. Since the model does not predict strain rate

effects for the current choice of at, only one curve is shown in Figure 13 with

the nominal experimental response. The accuracy is certainly within the consis-

tency of the experimental data. In all cases, the shape and magnitudes of the

predicted curves match the response quite well.

Amnother fundamental property of the model that should be included in this

section is the response on unloading. In general, Equation 30 is a creep formu-

lation that will predict a positive inelastic strain rate for all positive

values of stress. This implies that the model cannot predict "elastic" un-

loading. Thus, Equation 30 is modified such that

whenever (37)

( *) IQt <

where e is a small positive parameter.

35



A consequence of Equation 37 is that recovery cannot be predicted by the model

if ot- 0. Thus, e -69 4Pa/min (10 KSI/min) was used for RenA 95.
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TABLE 2. CREEP PROPERTIES OF RENE 95 AT 650*C(1200°F)

Min Inelastic
Creep Spec Creep value of
Stress Number Rate A(a)
MPa(KSI) %/min %

877.0 (127.2) 2 - 7 3.21 x 10-4  0.111

903.5 (131.0) 3 - 5 2.76 x I0 - 4  0.120

965.3 (140.0) 2 - 8 4.4 x 10 - 4  0.133

1034.3 (150.0) 3 - 8 1.15 x 10- 3  0.166

1034.3 (150.0) 1 - 5 2.0 x 10- 3  0.094

1089.4 (158.0) 1 - 8 9.09 x 10 - 3  0.163

1156.3 (167.7) 2 - 5 4.00 x 102 0.285

1206.6 (175.0) 1 - 7 1.63 x 10-  0.804
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TABLE 3. COEFFICIENTS FOR EQUATIONS 34, 35 AND 36
FOR RENE 95 AT 650*C(12000 F).

Coefficient Tension and
Compression

- 0.9370

92P MPa' 0.187 x 10

(KSI- ) (1.295 x 10- )

b, min 0.200

b 15.0
2

Ic -30.67

c 2 , MPa - 1  0.244

(KSI- ) (0. 1684)
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PREDICTIONS AND RESULTS

SECTION IX

THE PREDICTIVE CAPACITY OF THE MODELS

In the three previous parts of this report, the material parameters for the

models were determined from the tensile and creep response of the material. In

general, it was found that the models could reproduce the response character-

istics relatively well, and the accuracy was within the repeatability of the

experimental data. The predictive capability of the models depends upon their

ability to reproduce the strain response to stress histories distinctly dif-

ferent from the previous set of experiments. Thus, the models were used to

predict three different hysteresis loops and stress relaxation.

Let us consider first a simple hysteresis loop under stress control. The

stress history is 0, +1151, -1151, 0 MPa (0, +167, -167, 0 KSI) at a rate cor-

responding to 10 CPM. The predicted results are shown in Figures 16, 17, and

1S. It can be seen that the Bodner-Partom model, Figure 16, overpredicts the

strain in compression. This results from assuming the response in tension and

compression are equal. However, on this particular test, the Laflen-Stouffer

model underpredicts the compression. This most likely reflects the difference

between response in Figure 17 and the nominal compressive response of the mate-

rial. The Rabotnov-Papernik prediction appears to be best for this particular

test.

Consider next, the response to a similar history except that the material

is initially loaded in compression rather than tension; i.e., 0, -1151, +1151, 0

APa (0, -167, +167, 0 KSI). The constants in all three models were adjusted to

predict the same response in tension and compression due to the lack of compres-

sion data. Thus, the predicted response can be obtained by rotating Figures 16,
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1.7, and 18 about the origin 180 degrees. However, the relationship between the

observed response in tension and compression does not follow this simple rule.

Thus, the compressive response must be included in the models to accurately

predict the hysteresis response of Rend 95, especially for several cycles.

Another evaluation was made by comparing the predicted response to the

unbalanced hysteresis loop shown in Figujres 19, 20, and 21. In this example,

the stress history is 0, 1151, -600, 0 MPa (0, 167, -.87, 0 KSI), also at a rate

equivalent to 10 cpm. The prediction of all three models is approximately

equivalent and matches the experimental data relativ~ly well.

As a final example, consider the capability of the models to predict stress

relaxation to a 1.0% step strain history. As shown in Figure 22, the Bodner-

Partom and Rabotnov-Papernik models are relatively accurate at long times.

However, the initial rate of stress relaxation is not predicted very well by

either constitutive theory. To avoid inverting Equation 30, the observed stress

history from the stress relaxation experiment was used to calculate the

corresponding strain history. These results are given in Table 4. It can be

seen that the predicted strain history is essentially constant over the entire

domain of the experimental data even though the average strain is not 1.0%.

However, from the stress-strain curves, Figures 7 and 9 of Reference 1, it can

be seen that the error is within the response band of the material.
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TABLE 4. PREDICTION OF CONSTANT STRAIN RESPONSE FROM THE STRESS
RELAXATION DATA USING THE NONLINEAR CREEP MODEL.

Time, Stress Total Strain
Min. MPA (KSI) Percent

2.0 1093 (158.5) 1.341

6.0 1063 (154.2) 1.317

10.0 1051 (152.5) 1.318

14.0 1033 (149.9) 1.305

18.0 1026 (148.8) 1.304

22.0 1021 (148.1) 1.305

26.0 i 1015 (147.3) 1.305

30.0 1010 (146.5) 1.305

34.0 1006 (145.9) 1.305

38.0 1002 (145.3) 1.305

42.0 998 (144.7) 1.305

46.0 993 (144.1) 1.305
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SECTION X

SUMMARY OF PREDICTIONS AND RESULTS

A review of the results suggests there are three major aspects of the

response of Rend 95 that are not included in the above models. First, it is

essential to include the compressive response characteristics. This involves

developing a method of measuring high temperature compressive creep using two

extensometers to compensate for bending as mentioned in Reference 1. Second,

since two-thirds of the creep response prior to failure is in the tertiary creep

domain, it is necessary to include tertiary creep effects in the models to

predict plastic strains above 1.5%-2.0% in Rend 95. This could be important in

finite element modeling of complex structural components. Third, the models

should be modified to include cyclic history effects. This amounts to including

tertiary creep and a damage measure in the mechanical constitutive equation.

These topics must be addressed for a significant improvement in high temperature

modeling of RenA 95.

Finally, it is appropriate to make a direct comparative study of the three

models used in this investigation. This is shown in Table 5. It can be seen

that no model can fully predict the entire list of response characteristics

reviewed. Thus, one must choose the model that can best predict the response

characteristics that are most important for a particular material or structural

situation. In general, it appeared that it is easier to determine the material

parameters in the Rabotnov-Papernik and Laflen-Stouffer models. However, the

analysis of Z(W p) presented in Part 2 is expected to lead to a direct method of

determining the constants in the Bodner-Partom model. Conversely, the Bodner-

Partom model is best suited for numerical computation. The use of the elapsed

time, t -r , in the other models require integration on [O,t] for each choice of

the current time t. This is a disadvantage if the stress or strain history is

to be evaluated at a large number of time points such as in a finite element

analysis of a itructure.
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